
NoPdb

Ondřej Cífka

Jul 12, 2022

CONTENTS

1 Introduction 1

2 Contents 3
2.1 Getting Started . 3
2.2 API Reference . 6

Index 13

i

ii

CHAPTER

ONE

INTRODUCTION

NoPdb is a programmatic (non-interactive) debugger for Python. This means it gives you access to debugger-like
superpowers directly from your code. With NoPdb, you can:

• capture function calls, including arguments, local variables, return values and stack traces

• set “breakpoints” that trigger user-defined actions when hit, namely:

– evaluate expressions to retrieve their values later

– execute arbitrary code, including modifying local variables

– enter an interactive debugger like pdb

Note: NoPdb should run at least under CPython and PyPy. Most features should work under any implementation as
long as it has sys.settrace().

1

https://docs.python.org/3/library/sys.html#sys.settrace

NoPdb

2 Chapter 1. Introduction

CHAPTER

TWO

CONTENTS

2.1 Getting Started

2.1.1 Capturing function calls

The functions capture_call() and capture_calls() allow capturing useful information about calls to a
given function. They are typically used as context managers, e.g.:

with nopdb.capture_call(fn) as call:
some_code_that_calls_fn()

print(call) # see details about how fn() was called

Note: Only calls to pure-Python functions can be captured. Built-in functions and C extensions are not supported.

To have a concrete example, let’s first define some simple functions to work with:

>>> def f(x, y):
... z = x + y
... return 2 * z
>>> def g(x):
... return f(x, x)

Now let’s try calling g() and capturing the call to f() that will be made from there:

>>> with nopdb.capture_call(f) as call:
... g(1)
4
>>> call
CallCapture(name='f', args=OrderedDict(x=1, y=1), return_value=4)
>>> call.args['x']
1
>>> call.return_value
4
>>> call.locals
{'x': 1, 'y': 1, 'z': 2}
>>> call.print_stack()
File "<stdin>", line 2, in <module>
File "<stdin>", line 2, in g
File "<stdin>", line 1, in f

3

NoPdb

The object returned by capture_calls() will always contain information about the most recent call within the
context manager block. To capture all the calls, we can use capture_calls() (in the plural):

>>> with nopdb.capture_calls(f) as calls:
... g(1)
... g(42)
4
168
>>> calls
[CallInfo(name='f', args=OrderedDict(x=1, y=1), return_value=4),
CallInfo(name='f', args=OrderedDict(x=42, y=42), return_value=168)]

Both capture_call() and capture_calls() support different ways of specifying which function(s) should
be considered:

• We may pass a function or its name, i.e. capture_calls(f) or capture_calls('f').

• Passing a method bound to an instance, as in capture_calls(obj.f), will work as expected: only calls
invoked on that particular instance (and not other instances of the same class) will be captured.

• A module, a filename or a full file path can be passed, e.g. capture_calls('f', module=mymodule)
or capture_calls('f', file='mymodule.py').

• If no arguments are supplied, calls to all Python functions will be captured.

2.1.2 Setting breakpoints

Like conventional debuggers, NoPdb can set breakpoints. However, because NoPdb is a non-interactive debugger,
its breakpoints do not actually stop the execution of the program. Instead, they allow executing actions scheduled in
advance, such as evaluating expressions.

To set a breakpoint, call the breakpoint() function. A breakpoint object is returned, allowing to schedule actions
using its eval(), exec() and debug() methods.

Using the example from the previous section, let’s try to use a breakpoint to capture the value of a variable:

>>> with nopdb.breakpoint(f, line=3) as bp:
... z_values = bp.eval('z') # Get the value of z whenever the breakpoint is hit
...
... g(1)
... g(42)
4
168
>>> z_values
[2, 84]

Note: There are multiple ways to specify the breakpoint location (see the reference for breakpoint() for a detailed
description of all the parameters). Like in a classical debugger, we can pass a filename and a line number. Like
above, we can also pass a function (or its name). Note that lines are always counted from the beginning of the file
or notebook cell, and the breakpoint will be triggered just before executing the given line.

A more convenient option is to provide the source code of the desired line (ignoring surrounding whitespace), for
example:

with nopdb.breakpoint(f, line='return 2 * z') as bp:
...

4 Chapter 2. Contents

NoPdb

line can also be omitted, in which case the breakpoint will be triggered every time the given function is called.

A conditional breakpoint can be set using the cond parameter.

Not only can we capture values, we can also modify them!

>>> with nopdb.breakpoint(f, line=3) as bp:
... # Get the value of z, then increment it, then get the new value
... z_before = bp.eval('z')
... bp.exec('z += 1')
... z_after = bp.eval('z')
...
... g(1) # This would normally return 4
6
>>> z_before
[2]
>>> z_after
[3]

Warning: Assigning to local variables is somewhat experimental and only supported under CPython (the most
common Python implementation) and PyPy.

2.1.3 The NoPdb class

Another way to use NoPdb is by creating a NoPdb object. The object can either be used as a context manager, or
started and stopped explicitly using the start() and stop() methods. This can be useful if we want to set multiple
breakpoints or call captures in a single context:

with nopdb.NoPdb():
f_call = nopdb.capture_call(f)
g_call = nopdb.capture_call(g)
z_val = nopdb.breakpoint(f, line=3).eval('z')

g(1)

Or alternatively:

dbg = nopdb.NoPdb()
f_call = dbg.capture_call(f)
g_call = dbg.capture_call(g)
z_val = dbg.breakpoint(f, line=3).eval('z')

dbg.start()
g(1)
dbg.stop()

Note: While it is possible to create multiple NoPdb objects, they cannot be active simultaneously. Starting a new
instance will pause the currently active instance.

2.1. Getting Started 5

NoPdb

2.2 API Reference

nopdb.capture_call(function: Union[Callable, str, None] = None, *, module: Optional[module] =
None, file: Union[str, os.PathLike, None] = None, unwrap: bool = True) →
nopdb.call_capture.CallCapture

Capture a function call.

The returned object can be used as a context manager, which will cause the capturing to stop at the end of the
block.

If multiple calls occur, the returned object will be updated as each call returns. At the end, the returned object
will contain information about the call that was the last to return.

Parameters

• function (Callable or str, optional) – A Python callable or the name of a
Python function. If an instance method is passed, only calls invoked on that particular
instance will be captured.

• module (ModuleType, optional) – A Python module. If given, only calls to func-
tions defined in this module will be captured.

• file (str or PathLike, optional) – A path to a Python source file. If given,
only calls to functions defined in this file will be captured. If a string is passed, it will be
used as a glob-style pattern for pathlib.PurePath.match(). If a path-like object is
passed, it will be resolved to a canonical path and checked for an exact match.

• unwrap (bool, optional) – Whether or not to unwrap function when it is a wrapper
(e.g. produced by a decorator). Only works when function is given as a callable. Defaults
to True.

Returns An instance of CallInfo which also works as a context manager.

Return type CallCapture

nopdb.capture_calls(function: Union[Callable, str, None] = None, *, module: Optional[module] =
None, file: Union[str, os.PathLike, None] = None, unwrap: bool = True) →
nopdb.call_capture.CallListCapture

Capture function calls.

The return value is an initially empty list, which is updated with a new item as each call returns. At the end, the
list will contain a CallInfo object for each call, following the order in which the calls returned.

The return value can also be used as a context manager, which will cause the capturing to stop at the end of the
block.

Parameters

• function (Callable or str, optional) – A Python callable or the name of a
Python function. If an instance method is passed, only calls invoked on that particular
instance will be captured.

• module (ModuleType, optional) – A Python module. If given, only calls to func-
tions defined in this module will be captured.

• file (str or PathLike, optional) – A path to a Python source file. If given,
only calls to functions defined in this file will be captured. If a string is passed, it will be
used as a glob-style pattern for pathlib.PurePath.match(). If a path-like object is
passed, it will be resolved to a canonical path and checked for an exact match.

6 Chapter 2. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/types.html#types.ModuleType
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/pathlib.html#pathlib.PurePath.match
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/types.html#types.ModuleType
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/pathlib.html#pathlib.PurePath.match

NoPdb

• unwrap (bool, optional) – Whether or not to unwrap function when it is a wrapper
(e.g. produced by a decorator). Only works when function is given as a callable. Defaults
to True.

Returns A list of CallInfo objects which also works as a context manager.

Return type CallListCapture

nopdb.breakpoint(function: Union[Callable, str, None] = None, *, module: Optional[module] =
None, file: Union[str, os.PathLike, None] = None, line: Union[int, str, None] =
None, cond: Union[str, bytes, code, None] = None, unwrap: bool = True) →
nopdb.breakpoint.Breakpoint

Set a breakpoint.

The returned Breakpoint object works as a context manager that removes the breakpoint at the end of the
block.

The breakpoint itself does not stop execution when hit, but can trigger user-defined actions; see Breakpoint.
eval(), Breakpoint.exec(), Breakpoint.debug().

At least a function, a module or a file must be specified. If no function is given, a line is also required.

Example:

Stop at the line in f that says "return y"
with nopdb.breakpoint(function=f, line="return y") as bp:

x = bp.eval("x") # Schedule an expression
type_y = bp.eval("type(y)") # Another one
bp.exec("print(y)") # Schedule a print statement

Now run some code that calls f
...

print(x, type_y) # Retrieve the recorded values

Parameters

• function (Callable or str, optional) – A Python callable or the name of a
Python function. If an instance method is passed, only calls invoked on that particular
instance will trigger the breakpoint.

• module (ModuleType, optional) – A Python module.

• file (str or PathLike, optional) – A path to a Python source file. If a string
is passed, it will be used as a glob-style pattern for pathlib.PurePath.match(). If
a path-like object is passed, it will be resolved to a canonical path and checked for an exact
match.

• line (int or str, optional) – The line at which to break. Either of the following:

– The line number, counted from the beginning of the file.

– The source code of the line. The code needs to match exactly, except for leading and
trailing whitespace.

– None; in this case, a function must be passed, and the breakpoint will be triggered every
time the function is called.

Note that unlike in pdb, the breakpoint will only get triggered by the exact given line. This
means that some lines will not work as breakpoints, e.g. if they are part of a multiline
statement or do not contain any code to execute.

2.2. API Reference 7

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/types.html#types.ModuleType
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/pathlib.html#pathlib.PurePath.match
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

NoPdb

• cond (str, bytes or CodeType, optional) – A condition to evaluate. If given,
the breakpoint will only be triggered when the condition evaluates to true.

• unwrap (bool, optional) – Whether or not to unwrap function when it is a wrapper
(e.g. produced by a decorator). Only works when function is given as a callable. Defaults
to True.

Returns The breakpoint object, which also works as a context manager.

Return type Breakpoint

nopdb.get_nopdb()→ nopdb.nopdb.NoPdb
Return an instance of NoPdb.

If a NoPdb instance is currently active in the current thread, that instance is returned. Otherwise, the default
instance for the current thread is returned.

class nopdb.NoPdb
The main NoPdb class.

Multiple instances can be created, but only one can be active in a given thread at a given time. It can be used as
a context manager.

add_callback(scope: nopdb.scope.Scope, callback: Callable[[frame, str, Any], Any], events: Iter-
able[str])→ nopdb.common.Handle

Register a low-level callback for the given type(s) of events.

Parameters

• scope (Scope) – The scope in which the callback should be active.

• callback (TraceFunc) – The callback function. It should have the same signature as
the function passed to sys.settrace(), but its return value will be ignored.

• events (Iterable[str]) – A list of event names ('call', 'line', 'return'
or 'exception'); see sys.settrace().

Returns A handle that can be passed to remove_callback().

Return type Handle

breakpoint(function: Union[Callable, str, None] = None, *, module: Optional[module] =
None, file: Union[str, os.PathLike, None] = None, line: Union[int, str, None] =
None, cond: Union[str, bytes, code, None] = None, unwrap: bool = True) →
nopdb.breakpoint.Breakpoint

Set a breakpoint.

The returned Breakpoint object works as a context manager that removes the breakpoint at the end of
the block.

The breakpoint itself does not stop execution when hit, but can trigger user-defined actions; see
Breakpoint.eval(), Breakpoint.exec(), Breakpoint.debug().

At least a function, a module or a file must be specified. If no function is given, a line is also required.

Example:

Stop at the line in f that says "return y"
with nopdb.breakpoint(function=f, line="return y") as bp:

x = bp.eval("x") # Schedule an expression
type_y = bp.eval("type(y)") # Another one
bp.exec("print(y)") # Schedule a print statement

(continues on next page)

8 Chapter 2. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/types.html#types.CodeType
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/sys.html#sys.settrace
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/sys.html#sys.settrace

NoPdb

(continued from previous page)

Now run some code that calls f
...

print(x, type_y) # Retrieve the recorded values

Parameters

• function (Callable or str, optional) – A Python callable or the name of
a Python function. If an instance method is passed, only calls invoked on that particular
instance will trigger the breakpoint.

• module (ModuleType, optional) – A Python module.

• file (str or PathLike, optional) – A path to a Python source file. If a string
is passed, it will be used as a glob-style pattern for pathlib.PurePath.match().
If a path-like object is passed, it will be resolved to a canonical path and checked for an
exact match.

• line (int or str, optional) – The line at which to break. Either of the follow-
ing:

– The line number, counted from the beginning of the file.

– The source code of the line. The code needs to match exactly, except for leading and
trailing whitespace.

– None; in this case, a function must be passed, and the breakpoint will be triggered every
time the function is called.

Note that unlike in pdb, the breakpoint will only get triggered by the exact given line. This
means that some lines will not work as breakpoints, e.g. if they are part of a multiline
statement or do not contain any code to execute.

• cond (str, bytes or CodeType, optional) – A condition to evaluate. If
given, the breakpoint will only be triggered when the condition evaluates to true.

• unwrap (bool, optional) – Whether or not to unwrap function when it is a wrapper
(e.g. produced by a decorator). Only works when function is given as a callable. Defaults
to True.

Returns The breakpoint object, which also works as a context manager.

Return type Breakpoint

capture_call(function: Union[Callable, str, None] = None, *, module: Optional[module] =
None, file: Union[str, os.PathLike, None] = None, unwrap: bool = True) →
nopdb.call_capture.CallCapture

Capture a function call.

The returned object can be used as a context manager, which will cause the capturing to stop at the end of
the block.

If multiple calls occur, the returned object will be updated as each call returns. At the end, the returned
object will contain information about the call that was the last to return.

Parameters

• function (Callable or str, optional) – A Python callable or the name of
a Python function. If an instance method is passed, only calls invoked on that particular
instance will be captured.

2.2. API Reference 9

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/types.html#types.ModuleType
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/pathlib.html#pathlib.PurePath.match
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/types.html#types.CodeType
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

NoPdb

• module (ModuleType, optional) – A Python module. If given, only calls to func-
tions defined in this module will be captured.

• file (str or PathLike, optional) – A path to a Python source file. If given,
only calls to functions defined in this file will be captured. If a string is passed, it will be
used as a glob-style pattern for pathlib.PurePath.match(). If a path-like object
is passed, it will be resolved to a canonical path and checked for an exact match.

• unwrap (bool, optional) – Whether or not to unwrap function when it is a wrapper
(e.g. produced by a decorator). Only works when function is given as a callable. Defaults
to True.

Returns An instance of CallInfo which also works as a context manager.

Return type CallCapture

capture_calls(function: Union[Callable, str, None] = None, *, module: Optional[module] =
None, file: Union[str, os.PathLike, None] = None, unwrap: bool = True) →
nopdb.call_capture.CallListCapture

Capture function calls.

The return value is an initially empty list, which is updated with a new item as each call returns. At the
end, the list will contain a CallInfo object for each call, following the order in which the calls returned.

The return value can also be used as a context manager, which will cause the capturing to stop at the end
of the block.

Parameters

• function (Callable or str, optional) – A Python callable or the name of
a Python function. If an instance method is passed, only calls invoked on that particular
instance will be captured.

• module (ModuleType, optional) – A Python module. If given, only calls to func-
tions defined in this module will be captured.

• file (str or PathLike, optional) – A path to a Python source file. If given,
only calls to functions defined in this file will be captured. If a string is passed, it will be
used as a glob-style pattern for pathlib.PurePath.match(). If a path-like object
is passed, it will be resolved to a canonical path and checked for an exact match.

• unwrap (bool, optional) – Whether or not to unwrap function when it is a wrapper
(e.g. produced by a decorator). Only works when function is given as a callable. Defaults
to True.

Returns A list of CallInfo objects which also works as a context manager.

Return type CallListCapture

remove_callback(handle: nopdb.common.Handle)→ None
Remove a callback added using add_callback().

Parameters handle (Handle) – A handle returned by add_callback().

start()→ None
Start this instance.

Called automatically when the object is used as a context manager.

property started

stop()→ None
Stop this instance.

Called automatically when the object is used as a context manager.

10 Chapter 2. Contents

https://docs.python.org/3/library/types.html#types.ModuleType
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/pathlib.html#pathlib.PurePath.match
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/types.html#types.ModuleType
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/pathlib.html#pathlib.PurePath.match
https://docs.python.org/3/library/functions.html#bool

NoPdb

class nopdb.Breakpoint(nopdb: NoPdb, scope: nopdb.scope.Scope, line: Union[int, str, None] =
None, cond: Union[str, bytes, code, None] = None)

Bases: nopdb.common.NoPdbContextManager

A breakpoint that executes scheduled actions when hit.

Breakpoints are typically created with nopdb.breakpoint(). The breakpoint object works as a context
manager that removes the breakpoint on exit.

enable()→ None
Enable the breakpoint again after calling disable().

disable()→ None
Disable (remove) the breakpoint.

debug(debugger_cls: Type[bdb.Bdb] = <class 'pdb.Pdb'>, **kwargs)→ None
Schedule an interactive debugger to be entered at the breakpoint.

Parameters

• debugger_cls (Type[bdb.Bdb], optional) – The debuger class. Defaults to
pdb.Pdb.

• **kwargs – Keyword arguments to pass to the debugger.

eval(expression: Union[str, bytes, code], variables: Optional[Dict[str, Any]] = None)→ list
Schedule an expression to be evaluated at the breakpoint.

Parameters

• expression (str, bytes or CodeType) – A Python expression to be evaluated
in the breakpoint’s scope.

• variables (Dict[str, Any], optional) – External variables for the expres-
sion.

Returns An empty list that will later be filled with values of the expression.

Return type list

exec(code: Union[str, bytes, code], variables: Optional[Dict[str, Any]] = None)→ None
Schedule some code to be executed at the breakpoint.

The code will be executed in the breakpoint’s scope. Any changes to local variables (including newly
defined variables) will be preserved in the local scope; note that this feature is somewhat experimental and
may not work with Python implementations other than CPython and PyPy.

Parameters

• code (str, bytes or CodeType) – Python source code to be executed in the
breakpoint’s scope.

• variables (Dict[str, Any], optional) – External variables for the code.
These may not conflict with local variables and will not be preserved in the local scope.

class nopdb.Scope(function: Union[Callable, str, None] = None, module: Optional[module] = None,
file: Union[str, os.PathLike, None] = None, unwrap: bool = True)

class nopdb.CallInfo
Information about a function call.

name
The name of the function’s code object.

Type str

2.2. API Reference 11

https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/bdb.html#bdb.Bdb
https://docs.python.org/3/library/pdb.html#pdb.Pdb
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/types.html#types.CodeType
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/types.html#types.CodeType
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

NoPdb

file
The path to the file where the function was defined.

Type str

stack
The call stack.

Type traceback.StackSummary

args
The function’s arguments.

Type dict

locals
Local variables on return.

Type dict

globals
Global variables on return.

Type dict

return_value
The return value.

print_stack(file=None)→ None
Print the call stack.

class nopdb.CallCapture(nopdb: NoPdb, scope: Scope)
Bases: nopdb.call_capture.BaseCallCapture, nopdb.common.NoPdbContextManager,
nopdb.call_capture.CallInfo

enable()→ None
Start capturing again after calling disable().

disable()→ None
Stop capturing.

class nopdb.CallListCapture(nopdb: NoPdb, scope: Scope)
Bases: nopdb.call_capture.BaseCallCapture, nopdb.common.NoPdbContextManager,
list, typing.Generic

enable()→ None
Start capturing again after calling disable().

disable()→ None
Stop capturing.

12 Chapter 2. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/traceback.html#traceback.StackSummary
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Generic

INDEX

A
add_callback() (nopdb.NoPdb method), 8
args (nopdb.CallInfo attribute), 12

B
Breakpoint (class in nopdb), 11
breakpoint() (in module nopdb), 7
breakpoint() (nopdb.NoPdb method), 8

C
CallCapture (class in nopdb), 12
CallInfo (class in nopdb), 11
CallListCapture (class in nopdb), 12
capture_call() (in module nopdb), 6
capture_call() (nopdb.NoPdb method), 9
capture_calls() (in module nopdb), 6
capture_calls() (nopdb.NoPdb method), 10

D
debug() (nopdb.Breakpoint method), 11
disable() (nopdb.Breakpoint method), 11
disable() (nopdb.CallCapture method), 12
disable() (nopdb.CallListCapture method), 12

E
enable() (nopdb.Breakpoint method), 11
enable() (nopdb.CallCapture method), 12
enable() (nopdb.CallListCapture method), 12
eval() (nopdb.Breakpoint method), 11
exec() (nopdb.Breakpoint method), 11

F
file (nopdb.CallInfo attribute), 11

G
get_nopdb() (in module nopdb), 8
globals (nopdb.CallInfo attribute), 12

L
locals (nopdb.CallInfo attribute), 12

N
name (nopdb.CallInfo attribute), 11
NoPdb (class in nopdb), 8

P
print_stack() (nopdb.CallInfo method), 12

R
remove_callback() (nopdb.NoPdb method), 10
return_value (nopdb.CallInfo attribute), 12

S
Scope (class in nopdb), 11
stack (nopdb.CallInfo attribute), 12
start() (nopdb.NoPdb method), 10
started() (nopdb.NoPdb property), 10
stop() (nopdb.NoPdb method), 10

13

	Introduction
	Contents
	Getting Started
	API Reference

	Index

