

NoPdb: Non-interactive Python Debugger

Introduction

NoPdb is a programmatic (non-interactive) debugger for Python. This means it gives you access to
debugger-like superpowers directly from your code. With NoPdb, you can:

	capture function calls, including arguments, local variables, return values and stack traces

	set “breakpoints” that trigger user-defined actions when hit, namely:

	evaluate expressions to retrieve their values later

	execute arbitrary code, including modifying local variables

	enter an interactive debugger like pdb

Note

NoPdb should run at least under CPython and PyPy. Most features should work under any implementation
as long as it has sys.settrace() [https://docs.python.org/3/library/sys.html#sys.settrace].

Contents

	Getting Started
	Capturing function calls

	Setting breakpoints

	The NoPdb class

	API Reference

Getting Started

Capturing function calls

The functions capture_call() and capture_calls() allow
capturing useful information about calls to a given function.
They are typically used as context managers, e.g.:

with nopdb.capture_call(fn) as call:
 some_code_that_calls_fn()

 print(call) # see details about how fn() was called

Note

Only calls to pure-Python functions can be captured. Built-in functions
and C extensions are not supported.

To have a concrete example, let’s first define some simple functions to work with:

>>> def f(x, y):
... z = x + y
... return 2 * z
>>> def g(x):
... return f(x, x)

Now let’s try calling g() and capturing the call to f() that
will be made from there:

>>> with nopdb.capture_call(f) as call:
... g(1)
4
>>> call
CallCapture(name='f', args=OrderedDict(x=1, y=1), return_value=4)
>>> call.args['x']
1
>>> call.return_value
4
>>> call.locals
{'x': 1, 'y': 1, 'z': 2}
>>> call.print_stack()
 File "<stdin>", line 2, in <module>
 File "<stdin>", line 2, in g
 File "<stdin>", line 1, in f

The object returned by capture_calls() will always contain information
about the most recent call within the context manager block.
To capture all the calls, we can use capture_calls() (in the plural):

>>> with nopdb.capture_calls(f) as calls:
... g(1)
... g(42)
4
168
>>> calls
[CallInfo(name='f', args=OrderedDict(x=1, y=1), return_value=4),
 CallInfo(name='f', args=OrderedDict(x=42, y=42), return_value=168)]

Both capture_call() and capture_calls() support different ways of
specifying which function(s) should be considered:

	We may pass a function or its name, i.e. capture_calls(f) or
capture_calls('f').

	Passing a method bound to an instance, as in capture_calls(obj.f),
will work as expected: only calls invoked on that particular instance (and
not other instances of the same class) will be captured.

	A module, a filename or a full file path can be passed, e.g.
capture_calls('f', module=mymodule)
or
capture_calls('f', file='mymodule.py').

	If no arguments are supplied, calls to all Python functions will be captured.

Setting breakpoints

Like conventional debuggers, NoPdb can set breakpoints. However, because NoPdb is a
non-interactive debugger, its breakpoints do not actually stop the execution of the
program. Instead, they allow executing actions scheduled in advance, such as
evaluating expressions.

To set a breakpoint, call the breakpoint() function. A breakpoint object
is returned, allowing to schedule actions using its
eval(), exec() and debug()
methods.

Using the example from the previous section, let’s try to use a breakpoint to capture
the value of a variable:

>>> with nopdb.breakpoint(f, line=3) as bp:
... z_values = bp.eval('z') # Get the value of z whenever the breakpoint is hit
...
... g(1)
... g(42)
4
168
>>> z_values
[2, 84]

Note

There are multiple ways to specify the breakpoint location (see the
reference for breakpoint() for a detailed description of all the
parameters). Like in a classical debugger, we can pass a filename and a
line number. Like above, we can also pass a function (or its name).
Note that lines are always counted from the beginning of the file or notebook cell,
and the breakpoint will be triggered just before executing the given line.

A more convenient option is to provide the source code of the desired line
(ignoring surrounding whitespace), for example:

with nopdb.breakpoint(f, line='return 2 * z') as bp:
 ...

line can also be omitted, in which case the breakpoint will be triggered
every time the given function is called.

A conditional breakpoint can be set using the cond parameter.

Not only can we capture values, we can also modify them!

>>> with nopdb.breakpoint(f, line=3) as bp:
... # Get the value of z, then increment it, then get the new value
... z_before = bp.eval('z')
... bp.exec('z += 1')
... z_after = bp.eval('z')
...
... g(1) # This would normally return 4
6
>>> z_before
[2]
>>> z_after
[3]

Warning

Assigning to local variables is somewhat experimental and only supported
under CPython (the most common Python implementation) and PyPy.

The NoPdb class

Another way to use NoPdb is by creating a NoPdb object. The object can either
be used as a context manager, or started and stopped explicitly using the
start() and stop() methods. This can be useful if we want to
set multiple breakpoints or call captures in a single context:

with nopdb.NoPdb():
 f_call = nopdb.capture_call(f)
 g_call = nopdb.capture_call(g)
 z_val = nopdb.breakpoint(f, line=3).eval('z')

 g(1)

Or alternatively:

dbg = nopdb.NoPdb()
f_call = dbg.capture_call(f)
g_call = dbg.capture_call(g)
z_val = dbg.breakpoint(f, line=3).eval('z')

dbg.start()
g(1)
dbg.stop()

Note

While it is possible to create multiple NoPdb objects, they cannot
be active simultaneously. Starting a new instance will pause the currently active
instance.

API Reference

	
nopdb.capture_call(function: Union[Callable, str, None] = None, *, module: Optional[module] = None, file: Union[str, os.PathLike, None] = None, unwrap: bool = True) → nopdb.call_capture.CallCapture

	Capture a function call.

The returned object can be used as a context manager, which will cause the
capturing to stop at the end of the block.

If multiple calls occur, the returned object will be updated as each call
returns. At the end, the returned object will contain information about the
call that was the last to return.

	Parameters

	
	function (Callable or str [https://docs.python.org/3/library/stdtypes.html#str], optional) – A Python callable or the name
of a Python function. If an instance method is passed, only calls
invoked on that particular instance will be captured.

	module (ModuleType [https://docs.python.org/3/library/types.html#types.ModuleType], optional) – A Python module. If given, only calls
to functions defined in this module will be captured.

	file (str [https://docs.python.org/3/library/stdtypes.html#str] or PathLike [https://docs.python.org/3/library/os.html#os.PathLike], optional) – A path to a Python source file. If
given, only calls to functions defined in this file will be captured.
If a string is passed, it will be used as a glob-style pattern for
pathlib.PurePath.match() [https://docs.python.org/3/library/pathlib.html#pathlib.PurePath.match]. If a path-like object is passed, it
will be resolved to a canonical path and checked for an exact match.

	unwrap (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether or not to unwrap function when it is a
wrapper (e.g. produced by a decorator). Only works when function is
given as a callable. Defaults to True.

	Returns

	An instance of CallInfo which also works as a context
manager.

	Return type

	CallCapture

	
nopdb.capture_calls(function: Union[Callable, str, None] = None, *, module: Optional[module] = None, file: Union[str, os.PathLike, None] = None, unwrap: bool = True) → nopdb.call_capture.CallListCapture

	Capture function calls.

The return value is an initially empty list, which is updated with a new item
as each call returns. At the end, the list will contain a CallInfo
object for each call, following the order in which the calls returned.

The return value can also be used as a context manager, which will cause the
capturing to stop at the end of the block.

	Parameters

	
	function (Callable or str [https://docs.python.org/3/library/stdtypes.html#str], optional) – A Python callable or the name
of a Python function. If an instance method is passed, only calls
invoked on that particular instance will be captured.

	module (ModuleType [https://docs.python.org/3/library/types.html#types.ModuleType], optional) – A Python module. If given, only calls
to functions defined in this module will be captured.

	file (str [https://docs.python.org/3/library/stdtypes.html#str] or PathLike [https://docs.python.org/3/library/os.html#os.PathLike], optional) – A path to a Python source file. If
given, only calls to functions defined in this file will be captured.
If a string is passed, it will be used as a glob-style pattern for
pathlib.PurePath.match() [https://docs.python.org/3/library/pathlib.html#pathlib.PurePath.match]. If a path-like object is passed, it
will be resolved to a canonical path and checked for an exact match.

	unwrap (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether or not to unwrap function when it is a
wrapper (e.g. produced by a decorator). Only works when function is
given as a callable. Defaults to True.

	Returns

	A list of CallInfo objects which also works as a
context manager.

	Return type

	CallListCapture

	
nopdb.breakpoint(function: Union[Callable, str, None] = None, *, module: Optional[module] = None, file: Union[str, os.PathLike, None] = None, line: Union[int, str, None] = None, cond: Union[str, bytes, code, None] = None, unwrap: bool = True) → nopdb.breakpoint.Breakpoint

	Set a breakpoint.

The returned Breakpoint object works as a context manager that removes
the breakpoint at the end of the block.

The breakpoint itself does not stop execution when hit, but can trigger
user-defined actions; see Breakpoint.eval(), Breakpoint.exec(),
Breakpoint.debug().

At least a function, a module or a file must be specified. If no function is
given, a line is also required.

Example:

Stop at the line in f that says "return y"
with nopdb.breakpoint(function=f, line="return y") as bp:
 x = bp.eval("x") # Schedule an expression
 type_y = bp.eval("type(y)") # Another one
 bp.exec("print(y)") # Schedule a print statement

 # Now run some code that calls f
 # ...

print(x, type_y) # Retrieve the recorded values

	Parameters

	
	function (Callable or str [https://docs.python.org/3/library/stdtypes.html#str], optional) – A Python callable or the name
of a Python function. If an instance method is passed, only calls
invoked on that particular instance will trigger the breakpoint.

	module (ModuleType [https://docs.python.org/3/library/types.html#types.ModuleType], optional) – A Python module.

	file (str [https://docs.python.org/3/library/stdtypes.html#str] or PathLike [https://docs.python.org/3/library/os.html#os.PathLike], optional) – A path to a Python source file.
If a string is passed, it will be used as a glob-style pattern for
pathlib.PurePath.match() [https://docs.python.org/3/library/pathlib.html#pathlib.PurePath.match]. If a path-like object is passed, it
will be resolved to a canonical path and checked for an exact match.

	line (int [https://docs.python.org/3/library/functions.html#int] or str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The line at which to break. Either of the
following:

	The line number, counted from the beginning of the file.

	The source code of the line. The code needs to match exactly, except
for leading and trailing whitespace.

	None; in this case, a function must be passed, and the breakpoint
will be triggered every time the function is called.

Note that unlike in pdb, the breakpoint will only get triggered by
the exact given line. This means that some lines will not work as
breakpoints, e.g. if they are part of a multiline statement or do not
contain any code to execute.

	cond (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes] or CodeType [https://docs.python.org/3/library/types.html#types.CodeType], optional) – A condition to evaluate. If
given, the breakpoint will only be triggered when the condition
evaluates to true.

	unwrap (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether or not to unwrap function when it is a
wrapper (e.g. produced by a decorator). Only works when function is
given as a callable. Defaults to True.

	Returns

	The breakpoint object, which also works as a context manager.

	Return type

	Breakpoint

	
nopdb.get_nopdb() → nopdb.nopdb.NoPdb

	Return an instance of NoPdb.

If a NoPdb instance is currently active in the current thread, that
instance is returned. Otherwise, the default instance for the current thread is
returned.

	
class nopdb.NoPdb

	The main NoPdb class.

Multiple instances can be created, but only one can be active in a given thread at
a given time. It can be used as a context manager.

	
add_callback(scope: nopdb.scope.Scope, callback: Callable[[frame, str, Any], Any], events: Iterable[str]) → nopdb.common.Handle

	Register a low-level callback for the given type(s) of events.

	Parameters

	
	scope (Scope) – The scope in which the callback should be active.

	callback (TraceFunc) – The callback function. It should have the same
signature as the function passed to sys.settrace() [https://docs.python.org/3/library/sys.html#sys.settrace], but its
return value will be ignored.

	events (Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]) – A list of event names ('call',
'line', 'return' or 'exception'); see
sys.settrace() [https://docs.python.org/3/library/sys.html#sys.settrace].

	Returns

	A handle that can be passed to remove_callback().

	Return type

	Handle

	
breakpoint(function: Union[Callable, str, None] = None, *, module: Optional[module] = None, file: Union[str, os.PathLike, None] = None, line: Union[int, str, None] = None, cond: Union[str, bytes, code, None] = None, unwrap: bool = True) → nopdb.breakpoint.Breakpoint

	Set a breakpoint.

The returned Breakpoint object works as a context manager that removes
the breakpoint at the end of the block.

The breakpoint itself does not stop execution when hit, but can trigger
user-defined actions; see Breakpoint.eval(), Breakpoint.exec(),
Breakpoint.debug().

At least a function, a module or a file must be specified. If no function is
given, a line is also required.

Example:

Stop at the line in f that says "return y"
with nopdb.breakpoint(function=f, line="return y") as bp:
 x = bp.eval("x") # Schedule an expression
 type_y = bp.eval("type(y)") # Another one
 bp.exec("print(y)") # Schedule a print statement

 # Now run some code that calls f
 # ...

print(x, type_y) # Retrieve the recorded values

	Parameters

	
	function (Callable or str [https://docs.python.org/3/library/stdtypes.html#str], optional) – A Python callable or the name
of a Python function. If an instance method is passed, only calls
invoked on that particular instance will trigger the breakpoint.

	module (ModuleType [https://docs.python.org/3/library/types.html#types.ModuleType], optional) – A Python module.

	file (str [https://docs.python.org/3/library/stdtypes.html#str] or PathLike [https://docs.python.org/3/library/os.html#os.PathLike], optional) – A path to a Python source file.
If a string is passed, it will be used as a glob-style pattern for
pathlib.PurePath.match() [https://docs.python.org/3/library/pathlib.html#pathlib.PurePath.match]. If a path-like object is passed, it
will be resolved to a canonical path and checked for an exact match.

	line (int [https://docs.python.org/3/library/functions.html#int] or str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The line at which to break. Either of the
following:

	The line number, counted from the beginning of the file.

	The source code of the line. The code needs to match exactly, except
for leading and trailing whitespace.

	None; in this case, a function must be passed, and the breakpoint
will be triggered every time the function is called.

Note that unlike in pdb, the breakpoint will only get triggered by
the exact given line. This means that some lines will not work as
breakpoints, e.g. if they are part of a multiline statement or do not
contain any code to execute.

	cond (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes] or CodeType [https://docs.python.org/3/library/types.html#types.CodeType], optional) – A condition to evaluate. If
given, the breakpoint will only be triggered when the condition
evaluates to true.

	unwrap (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether or not to unwrap function when it is a
wrapper (e.g. produced by a decorator). Only works when function is
given as a callable. Defaults to True.

	Returns

	The breakpoint object, which also works as a context manager.

	Return type

	Breakpoint

	
capture_call(function: Union[Callable, str, None] = None, *, module: Optional[module] = None, file: Union[str, os.PathLike, None] = None, unwrap: bool = True) → nopdb.call_capture.CallCapture

	Capture a function call.

The returned object can be used as a context manager, which will cause the
capturing to stop at the end of the block.

If multiple calls occur, the returned object will be updated as each call
returns. At the end, the returned object will contain information about the
call that was the last to return.

	Parameters

	
	function (Callable or str [https://docs.python.org/3/library/stdtypes.html#str], optional) – A Python callable or the name
of a Python function. If an instance method is passed, only calls
invoked on that particular instance will be captured.

	module (ModuleType [https://docs.python.org/3/library/types.html#types.ModuleType], optional) – A Python module. If given, only calls
to functions defined in this module will be captured.

	file (str [https://docs.python.org/3/library/stdtypes.html#str] or PathLike [https://docs.python.org/3/library/os.html#os.PathLike], optional) – A path to a Python source file. If
given, only calls to functions defined in this file will be captured.
If a string is passed, it will be used as a glob-style pattern for
pathlib.PurePath.match() [https://docs.python.org/3/library/pathlib.html#pathlib.PurePath.match]. If a path-like object is passed, it
will be resolved to a canonical path and checked for an exact match.

	unwrap (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether or not to unwrap function when it is a
wrapper (e.g. produced by a decorator). Only works when function is
given as a callable. Defaults to True.

	Returns

	An instance of CallInfo which also works as a context
manager.

	Return type

	CallCapture

	
capture_calls(function: Union[Callable, str, None] = None, *, module: Optional[module] = None, file: Union[str, os.PathLike, None] = None, unwrap: bool = True) → nopdb.call_capture.CallListCapture

	Capture function calls.

The return value is an initially empty list, which is updated with a new item
as each call returns. At the end, the list will contain a CallInfo
object for each call, following the order in which the calls returned.

The return value can also be used as a context manager, which will cause the
capturing to stop at the end of the block.

	Parameters

	
	function (Callable or str [https://docs.python.org/3/library/stdtypes.html#str], optional) – A Python callable or the name
of a Python function. If an instance method is passed, only calls
invoked on that particular instance will be captured.

	module (ModuleType [https://docs.python.org/3/library/types.html#types.ModuleType], optional) – A Python module. If given, only calls
to functions defined in this module will be captured.

	file (str [https://docs.python.org/3/library/stdtypes.html#str] or PathLike [https://docs.python.org/3/library/os.html#os.PathLike], optional) – A path to a Python source file. If
given, only calls to functions defined in this file will be captured.
If a string is passed, it will be used as a glob-style pattern for
pathlib.PurePath.match() [https://docs.python.org/3/library/pathlib.html#pathlib.PurePath.match]. If a path-like object is passed, it
will be resolved to a canonical path and checked for an exact match.

	unwrap (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether or not to unwrap function when it is a
wrapper (e.g. produced by a decorator). Only works when function is
given as a callable. Defaults to True.

	Returns

	A list of CallInfo objects which also works as a
context manager.

	Return type

	CallListCapture

	
remove_callback(handle: nopdb.common.Handle) → None

	Remove a callback added using add_callback().

	Parameters

	handle (Handle) – A handle returned by add_callback().

	
start() → None

	Start this instance.

Called automatically when the object is used as a context manager.

	
property started

	

	
stop() → None

	Stop this instance.

Called automatically when the object is used as a context manager.

	
class nopdb.Breakpoint(nopdb: NoPdb, scope: nopdb.scope.Scope, line: Union[int, str, None] = None, cond: Union[str, bytes, code, None] = None)

	Bases: nopdb.common.NoPdbContextManager

A breakpoint that executes scheduled actions when hit.

Breakpoints are typically created with nopdb.breakpoint(). The breakpoint
object works as a context manager that removes the breakpoint on exit.

	
enable() → None

	Enable the breakpoint again after calling disable().

	
disable() → None

	Disable (remove) the breakpoint.

	
debug(debugger_cls: Type[bdb.Bdb] = <class 'pdb.Pdb'>, **kwargs) → None

	Schedule an interactive debugger to be entered at the breakpoint.

	Parameters

	
	debugger_cls (Type [https://docs.python.org/3/library/typing.html#typing.Type][bdb.Bdb [https://docs.python.org/3/library/bdb.html#bdb.Bdb]], optional) – The debuger class. Defaults
to pdb.Pdb [https://docs.python.org/3/library/pdb.html#pdb.Pdb].

	**kwargs – Keyword arguments to pass to the debugger.

	
eval(expression: Union[str, bytes, code], variables: Optional[Dict[str, Any]] = None) → list

	Schedule an expression to be evaluated at the breakpoint.

	Parameters

	
	expression (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes] or CodeType [https://docs.python.org/3/library/types.html#types.CodeType]) – A Python expression to be
evaluated in the breakpoint’s scope.

	variables (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any], optional) – External variables
for the expression.

	Returns

	An empty list that will later be filled with values of the expression.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
exec(code: Union[str, bytes, code], variables: Optional[Dict[str, Any]] = None) → None

	Schedule some code to be executed at the breakpoint.

The code will be executed in the breakpoint’s scope. Any changes to local
variables (including newly defined variables) will be preserved in the local
scope; note that this feature is somewhat experimental and may not work with
Python implementations other than CPython and PyPy.

	Parameters

	
	code (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes] or CodeType [https://docs.python.org/3/library/types.html#types.CodeType]) – Python source code to be executed in
the breakpoint’s scope.

	variables (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any], optional) – External variables
for the code. These may not conflict with local variables and will
not be preserved in the local scope.

	
class nopdb.Scope(function: Union[Callable, str, None] = None, module: Optional[module] = None, file: Union[str, os.PathLike, None] = None, unwrap: bool = True)

	

	
class nopdb.CallInfo

	Information about a function call.

	
name

	The name of the function’s code object.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
file

	The path to the file where the function was defined.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
stack

	The call stack.

	Type

	traceback.StackSummary [https://docs.python.org/3/library/traceback.html#traceback.StackSummary]

	
args

	The function’s arguments.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
locals

	Local variables on return.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
globals

	Global variables on return.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
return_value

	The return value.

	
print_stack(file=None) → None

	Print the call stack.

	
class nopdb.CallCapture(nopdb: NoPdb, scope: Scope)

	Bases: nopdb.call_capture.BaseCallCapture, nopdb.common.NoPdbContextManager, nopdb.call_capture.CallInfo

	
enable() → None

	Start capturing again after calling disable().

	
disable() → None

	Stop capturing.

	
class nopdb.CallListCapture(nopdb: NoPdb, scope: Scope)

	Bases: nopdb.call_capture.BaseCallCapture, nopdb.common.NoPdbContextManager, list [https://docs.python.org/3/library/stdtypes.html#list], typing.Generic [https://docs.python.org/3/library/typing.html#typing.Generic]

	
enable() → None

	Start capturing again after calling disable().

	
disable() → None

	Stop capturing.

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | L
 | N
 | P
 | R
 | S

A

 	
 	add_callback() (nopdb.NoPdb method)

 	
 	args (nopdb.CallInfo attribute)

B

 	
 	Breakpoint (class in nopdb)

 	
 	breakpoint() (in module nopdb)

 	(nopdb.NoPdb method)

C

 	
 	CallCapture (class in nopdb)

 	CallInfo (class in nopdb)

 	CallListCapture (class in nopdb)

 	
 	capture_call() (in module nopdb)

 	(nopdb.NoPdb method)

 	capture_calls() (in module nopdb)

 	(nopdb.NoPdb method)

D

 	
 	debug() (nopdb.Breakpoint method)

 	disable() (nopdb.Breakpoint method)

 	(nopdb.CallCapture method)

 	(nopdb.CallListCapture method)

E

 	
 	enable() (nopdb.Breakpoint method)

 	(nopdb.CallCapture method)

 	(nopdb.CallListCapture method)

 	
 	eval() (nopdb.Breakpoint method)

 	exec() (nopdb.Breakpoint method)

F

 	
 	file (nopdb.CallInfo attribute)

G

 	
 	get_nopdb() (in module nopdb)

 	
 	globals (nopdb.CallInfo attribute)

L

 	
 	locals (nopdb.CallInfo attribute)

N

 	
 	name (nopdb.CallInfo attribute)

 	
 	NoPdb (class in nopdb)

P

 	
 	print_stack() (nopdb.CallInfo method)

R

 	
 	remove_callback() (nopdb.NoPdb method)

 	
 	return_value (nopdb.CallInfo attribute)

S

 	
 	Scope (class in nopdb)

 	stack (nopdb.CallInfo attribute)

 	
 	start() (nopdb.NoPdb method)

 	started() (nopdb.NoPdb property)

 	stop() (nopdb.NoPdb method)

 nav.xhtml

 Table of Contents

 		
 NoPdb: Non-interactive Python Debugger

 		
 Getting Started

 		
 Capturing function calls

 		
 Setting breakpoints

 		
 The NoPdb class

 		
 API Reference

_static/minus.png

_static/plus.png

_static/file.png

